这是谁?
不少人心中疑惑。
打扮的这么严实,还坐在会议室最后面。
不会是偷偷混进来的吧!
可是不应该啊!
会议大楼入口处的检查有多严格众人不是不清楚,没有证件的话,基本上是不会放行的。
众人一时间被打扮奇特的顾律吸引了注意力。
而站在台上的那位青年,宛若是抓住了救命稻草一般,满眼感激的望着顾律。
青年不指望顾律可以提出什么高质量的问题。
只求有人可以缓解他目前尴尬的处境。
青年连忙让侍者将话筒递到顾律手中。
顾律接过话筒。
青年深吸一口气,紧张的开口问道,“你有什么问题?”
顾律微微一笑,“我想问的问题,是有关你最后提出的三个定理中的定理三。”
“定理三?”青年微微一愣。
青年提出的定理三的具体内容是这样的:
【设μ是正规的,g∈H(b),g(0)=0,φ是单位球B上的解析自映射,α>1,则P(g,φ):B(α,log)→Bμ是紧算子,当且仅当g∈H(∞,p).
supμ(z)|g(z)|A(|φ(z)|)<∞】
这就是青年所述的定理三的全部内容。
在青年看来,这只是一个普普通通的结论性定理而已,没有什么特别之处。
青年不清楚顾律为什么要问这个。
顾律当然不清楚青年内心中的疑惑。
他只是单纯的想把内心中的那个想法说出来而已,“在得出这个定理的时候,难道你没有觉得,这个定理和有界算子有很大的关联之处吗?”
“有界算子?”
“没错,就是有界算子!”顾律语气笃定。
有界算子,可以说是泛函分析领域最热门的研究方向,没有之一!
青年搞不懂他这个定理为什么回和有界算子扯上关系。
他研究的明明是紧算子啊!
幸好,顾律及时解答了青年内心中的疑惑。